Примеры и способы соединения конденсаторов

Электрические схемы могут содержать элементы, основным параметром которых является емкость. Чаще всего это конденсаторы (также в этом качестве используются, например, варикапы, ионисторы и т.п.). Такие элементы можно соединять параллельно или последовательно и получать участки схемы с иными параметрами.

Отличия параллельного и последовательного конденсаторов

При параллельном (parallel) подключении обкладки конденсаторов соединяются в одной точке, а противоположные – в другой. К этим точкам подключается источник напряжения. Наглядно продемонстрировать такую схему можно на примере полярных приборов (например, электролитических конденсаторов), когда все положительные электроды соединяются между собой и подключаются к плюсу питания.

Отрицательные обкладки также соединяются в один узел, на который подается минус питающего напряжения. У неполярных элементов нет разделения на положительные и отрицательные электроды, они соединяются произвольным образом, но по тому же принципу (в этом случае на батарею можно подавать и двухполярное напряжение). Каждый конденсатор подключен непосредственно к источнику питания, поэтому напряжение на каждой банке одинаково.

Примеры и способы соединения конденсаторов
Параллельное включение элементов.

При последовательном (serial) соединении одна обкладка каждого элемента подключается к выводу соседнего конденсатора, а другая – к выводу другой ячейки. Напряжение подается на свободные выводы крайних элементов.

Примеры и способы соединения конденсаторов
Батарея из последовательно соединенных ячеек.

Смешанное подключение

Также существует смешанное соединение элементов, когда часть ячеек включена параллельно, часть последовательно. Такие схемы несколько сложнее для анализа.

Примеры и способы соединения конденсаторов
Батарея из смешанно соединенных конденсаторов.

Общая емкость и распределение напряжений между элементами при разных типах включения

Емкость конденсаторов зависит, в том числе, и от площади обкладок. Если однотипные элементы соединить параллельно, это можно рассматривать как суммирование всех площадей обкладок, что означает сложение емкостей банок, входящих в батарею. Очевидно, что это же правило действует и для разнотипных элементов. Аналитическим путем к этому можно прийти в результате следующих рассуждений:

  • очевидно, что при таком подключении на каждом элементе напряжения будут равны (U1=U2=U);
  • запасенные заряды всех пластин суммируются (q=q1+q2);
  • тогда общая емкость равна С=U*q=U*(q1+q2)=U*q1+U*q2=C1+C2.
Примеры и способы соединения конденсаторов
Напряжение и заряды при параллельном включении элементов.

Эта же формула действует при параллельном соединении n конденсаторов:

С=С12+..+Cn.

Примеры и способы соединения конденсаторов
Последовательное соединение емкостей.

Если соединить в последовательную цепь, например, три конденсатора различной емкости и полностью их зарядить до напряжения U, то выяснится, что:

  • заряды –q1 и q2, -q2 и q3 равны между собой, так как обкладки с этими зарядами электрически соединены;
  • заряды q1 и –q1, q2 и –q2, q3 и –q3 равны между собой по абсолютной величине, но противоположны по знаку.

Конденсаторы в таком включении получают равный заряд q, но при разной емкости получится, что напряжения на каждом элементе равны:

  • U1=q/ C1;
  • U2=q/ C2;
  • U3= q/ C3.

Напряжения распределяются пропорционально емкостям (при равных параметрах на каждой банке падает одинаковое сопротивление). А общая емкость равна С=q/(U1+U2+U3), отсюда 1/С=( U1+U2+U3)/q=1/С1+1/С2+1/С3.

Для n элементов, подключенных в последовательную цепь:

1/С=1/С1+1/С2+..+1/Сn.

Формула выглядит громоздко, но для цепи из двух элементов можно пользоваться приведенным видом С= С1* С2/( С1+ С2).

Для предварительного анализа схем, состоящих из емкостных элементов, подключенных различными способами, надо запомнить несколько законов:

  • при параллельном соединении емкости складываются, суммарная емкость всегда больше, чем у элемента с самым большим значением емкости;
  • напряжения при параллельном соединении одинаковы на каждом элементе цепи;
  • при последовательном соединении итоговая емкость будет меньше наименьшего значения емкости любого элемента;
  • напряжения на последовательно включенных звеньях распределяются пропорционально емкости.

Анализ и расчет схем со смешанным подключением элементов надо начинать с приведения цепи к единому виду, где конденсаторы будут включены либо только последовательно, либо только в параллель.

Примеры и способы соединения конденсаторов
Преобразование к последовательному виду.

Так, схема на рисунке содержит три элемента, два из которых включены в параллель, и один последовательно. Удобно С1 и С3 заменить одним эквивалентным звеном С – при этом останутся только последовательные звенья. Остается выполнить расчет схемы, а потом вернуться к изначальной цепи.

Примеры и способы соединения конденсаторов
Преобразование к последовательному виду.

Во второй схеме удобнее заменить эквивалентным звеном элементы С1 и С3. Схема примет вид параллельно включенных компонентов.


Рекомендуем видео-урок по физике.

Примеры подключений

Параллельное соединение применяется в тех случаях, когда надо увеличить итоговую емкость. По экономическим или компоновочным причинам использование одного элемента с необходимыми параметрами может быть невозможно или нерационально. Поэтому собирают батарею из конденсаторов так, чтобы сумма емкостей давала необходимое значение. Такая схема применяется, например, для фильтров блоков питания в целях увеличения емкости сглаживающего фильтра.

Другой вариант параллельного включения – когда емкость надо точно настраивать по месту, а подстроечного конденсатора с необходимыми пределами или нет в наличии, или не существует. Тогда параллельно конденсатору постоянной емкости включают подстроечный элемент. После монтажа устройства во время настройки устанавливается точное значение.

Примеры и способы соединения конденсаторов
Параллельно включенный прибор с постоянными параметрами и подстроечник.

Последовательное включение нескольких элементов дает увеличение рабочего напряжения цепочки, но уменьшает общую емкость. К тому же купить приборы на высокое напряжение (до нескольких киловольт) несложно, поэтому последовательные цепи в целях достижения необходимых параметров применяются нечасто. Обычно такое включение используется в емкостных делителях напряжения. В отличие от резистивных компонентов, через реактивные элементы не протекает активный ток, поэтому не надо решать задачу отвода тепла. Такие делители можно применять, к примеру, в индикаторах наличия высокого напряжения. Несколько киловольт на входе подбором номиналов банок делятся так, что напряжение на нижнем элементе безопасно для индикаторной лампы.

Примеры и способы соединения конденсаторов
Индикатор высокого напряжения.

Также такой делитель можно найти в схемах импульсных источников питания с полумостовой схемой. Таким способом образуется средняя точка с потенциалом, равным половине питания.

Примеры и способы соединения конденсаторов
Фрагмент схемы блока питания с фильтром-делителем и выравнивающими резисторами.

В таких схемах подобная цепь одновременно исполняет роль сглаживающего фильтра, поэтому в ней применяются электролитические (оксидные) конденсаторы большой емкости. Им присущи повышенные токи утечки со значительным разбросом. Поэтому для выравнивания потенциалов параллельно им устанавливается цепочка из резисторов с равным номиналом.


Еще один пример применения последовательного соединения элементов – в умножителях напряжения. В них нагрузочная способность источника питания зависит от емкости, поэтому в умножителях также применяются оксидные конденсаторы.

Примеры и способы соединения конденсаторов
Последовательная батарея для умножителя.

Смешанное включение встречается гораздо реже. Один из примеров такой схемы – колебательный контур с переменной частотой настройки. Его резонанс зависит, в том числе, от емкости конденсатора, и перестройка по частоте зависит от пределов изменения емкости. Ряд конденсаторов переменной емкости, выпускаемый промышленностью, довольно ограничен, поэтому для достижения необходимых границ параллельно и последовательно с КПЕ включают «растягивающие» конденсаторы.

Примеры и способы соединения конденсаторов
КПЕ с «растягивающими» элементами.

Если имеется конденсатор с пределами изменения характеристик от 10 до 430 пФ, при подключении добавочных конденсаторов пределы изменения емкости получаются:

С1, пФС2, пФНовые пределы изменения, пФ
154015..36
2510025..82

Подбирая или рассчитывая добавочные емкости, можно установить новые границы перестройки резонанса контура.


Знание свойств соединения емкостных элементов позволяет быстро анализировать процессы, происходящие в электрических схемах. Также понимание, как изменяются характеристики цепи при различных видах подключения, позволяет комбинировать имеющиеся элементы, создавая участки схем с новыми параметрами.
Становой Алексей

Инженер-электроник. Работаю в мастерской по ремонту бытовых приборов. Увлекаюсь схемотехникой.

Оцените автора
( Пока оценок нет )
Запитка
Добавить комментарий

Adblock
detector