Понятие электрической мощности (отдаваемой источником и потребляемой нагрузкой) является одним из самых важных в электротехнике, наряду с напряжением и током. Более того, эта величина объединяет и связывает эти два самых распространенных термина.
- Общие понятия электрической мощности
- Определение
- Единицы измерения
- Формула расчета
- Свойства
- Связь электрической мощности с напряжением и силой тока
- Понятие эффективной мощности и ее значение в электротехнике
- Влияние электрической мощности на нагрузку
- Методы измерения электрической мощности
- Примеры определения мощности тока в электрических системах
Общие понятия электрической мощности
Чтоб понять методы измерения и практического применения этой электрической величины, надо разобраться с теоретическими аспектами.
Определение
При протекании электрического тока по проводнику происходит перенос заряда. В процессе этого переноса электрический ток совершает работу по преодолению взаимодействия носителей заряда с другими частицами вещества. Это взаимодействие проявляется в нагреве проводника, световом излучении, химическом действии тока и т.д.
Чем большую работу производит электрический ток за один и тот же промежуток времени, тем большая электрическая мощность потребовалась для производства этой работы. Отсюда определение мощности – она равна работе электрического тока за промежуток времени, отнесенной к длительности этого промежутка.
Единицы измерения
Единица электрической мощности, принятая в СИ – 1 Ватт. При этой мощности за 1 секунду совершается работа в 1 Джоуль. В различных случаях удобнее применять дольные и кратные единицы:
- киловатт – 1000 ватт;
- мегаватт — 1 миллион ватт;
- милливатт – 0,001 ватт;
- другие единицы с соответствующими приставками.
Для обозначения мощности (как электрической, так и механической, и любой другой) используется латинская буква P.
Раньше для измерения электрической мощности применялись и внесистемные единицы (включая лошадиную силу). На сегодняшний день они практически вышли из употребления.
В цепях переменного тока, помимо активной мощности, измеряемой в ваттах, измеряют и другие виды электрической мощности – полную (в ВА – вольтамперах) и реактивную (в ВАр – вольтамперах реактивных). Их соотношение с активной мощностью зависит от величиныя и знака реактивности у нагрузки.
Формула расчета
Формула расчета следует из определения электрической мощности – надо совершенную током работу (в джоулях) разделить на время (в секундах), в течение которого совершена эта работа: P=A/t.
Если исходить из того, что мощность – это скорость преобразования энергии, можно вычислить искомую величину, как Р=E/t, где:
- E – потребленная (преобразованная) энергия;
- t – промежуток времени, в течение которого происходил расход электрической энергии.
Эта формула на практике применяется нечасто.
Свойства
В практической электротехнике используются некоторые свойства электрической мощности, позволяющие облегчить измерения и упростить измерительные приборы.
Связь электрической мощности с напряжением и силой тока
В реальности формула, использующая отношение работы ко времени ее совершения не используется. Это связано со сложностью непосредственного измерения работы и с неудобством контроля времени. Но если учесть, что работу электрического тока можно вычислить по формуле A=U*I*t, то легко представить формулу для вычисления мощности, как P=U*I*t/t=U*I.
Если известна лишь одна из величин (ток или напряжение), но при этом известно сопротивление нагрузки, формулу легко видоизменить, подставляя в нее низвестную величину, преобразованную по закону Ома (I=U/R). Например, если неизвестен ток, мощность вычисляется, как Р= U*I=U*U/R=U2/R.
Понятие эффективной мощности и ее значение в электротехнике
В электротехнике, как и в механике, существует понятие эффективной мощности. Дело в том, что электрическая мощность подается потребителю не напрямую от сети, а после преобразования (через трансформаторный блок питания, импульсный БП или другое устройство). При преобразовании происходят неизбежные потери мощности, которые зависят от КПД преобразующего устройства.
Естественно, от сети преобразователь потребляет больше, чем отдает в нагрузку, поэтому потребляемая мощность не всегда дает представление о том, возможно ли питание нагрузки от данного преобразователя. Полную информацию дает значение эффективной мощности. Если производитель БП ее не дает, эту величину можно вычислить (или хотя бы оценить) по формуле Рэфф=Pпотр/η, где:
- Рэфф – эффективная мощность, вт;
- Рпотр – мощность, потребляемая из сети, вт;
- η – КПД.
КПД различных преобразующих устройств можно найти в технической литературе.
Влияние электрической мощности на нагрузку
Понятие потребления электрической мощности подразумевает наличие источника этой мощности и ее потребителя. Источник мощности должен как минимум обеспечивать потребление нагрузки плюс потери при транспортировке (нагрев проводов, падение напряжения и т.п.). В противном случае потребитель недополучит электрическую энергию и не сможет произвести работу, которую от него требуется.
Методы измерения электрической мощности
Как показано выше, для вычисления электрической мощности достаточно знать ток и напряжение. Для замеров можно использовать амперметр и вольтметр, перемножив их показания.
А можно использовать специальный прибор – ваттметр, который замеряет обе величины одновременно и перемножает их. Классический ваттметр электродинамической системы состоит из двух катушек, подвижной и неподвижной. Эти катушки включаются на измерение напряжения и тока, соответственно, параллельно и последовательно с нагрузкой.
При прохождении тока и подаче напряжения обе катушки создают магнитные поля, которые взаимодействуют между собой в определенном направлении. Результирующий вращающий момент пропорционален мощности электрического тока (происходит перемножение величин механическим способом), и он ведет к отклонению стрелки, прикреплённой к подвижной катушке, на определенный угол. Этот угол можно считать по шкале, которая обычно градуируется сразу в единицах мощности.
В современных цифровых измерителях мощности используется тот же принцип, только ток измеряется другим способом. Последовательно с нагрузкой включается шунтовой резистор. Он имеет небольшое сопротивление, и на нагрузку практически не влияет. Когда через шунт идет ток, на нем падает небольшое напряжение, которое, как следует из закона Ома, прямо пропорционально протекающему току. Это напряжение измеряется и пересчитывается в ток.
Замеренные ток и напряжение перемножаются, пересчитываются в мощность (при этом учитывается угол сдвига между током и напряжением), масштабируются и выводятся на дисплей в удобной для восприятия форме.
Измерить среднюю потребляемую мощность за определенный промежуток времени можно с помощью счетчика электрической энергии. Для этого надо воспользоваться формулой P=∆E/t. Здесь ∆E – разница в показаниях счетчика за период времени, а t – длительность этого периода.
Таким способом можно измерить электрическую мощность в цепях постоянного тока. В цепях переменного тока подобным методом измеряется так называемая полная мощность (без учета сдвига фаз между током и напряжением), что не всегда информативно.
Рекомендуем прочесть:
Примеры определения мощности тока в электрических системах
Самый тривиальный случай измерения мощности – если у источника электрической энергии (блока питания и т.п.) имеется амперметр и вольтметр. Тогда достаточно перемножить измеренные значения. Например, на фото показан измерительный прибор блока питания. По формуле P=U*I легко определить, что мощность постоянного тока, отдаваемая источником (и потребляемая нагрузкой) равна P=12,4 В х 0,1 А=1,24 ватта.
Если надо постоянно контролировать мощность, лучше установить стационарный ваттметр. С него можно в любое время считать показания и использовать их для анализа и расчетов.
Существуют и бытовые измерители мощности. Они включаются в обычную бытовую розетку 220 вольт, а уже в розетку прибора включается нагрузка. Это может быть компьютер, настольная или напольная лампа – любой бытовой электроприбор.
Ваттметр может собирать статистику замеров за определенный временной период, обрабатывать показания, при необходимости выдавать на дисплей значения других электрических величин (тока, напряжения). С его помощью можно измерить фактическую мощность бытовых электроприборов и оценить их энергопотребление. Проанализировав режимы работы, можно оптимизировать затраты на оплату электрической энергии.
Разобравшись с понятием и сущностью электрической мощности, можно использовать его не только в теории, но и на практике. Например, знание фактической потребляемой мощности потребителей поможет минимизировать платежи за электроэнергию.